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1 Introduction

The assessment of statistical procedures often requires the evaluation of error proba-

bilities that can be written as

0= f()d,(1)

where f is a probability density, and A C RP is a tail region typically of the form {z E RP:

zi > a,, i = 1,..., p}. When there is some special structure in such a problem, analytically

tractable approximations or inequalities are available ([10],[15]); when this is not the case,

however, Monte Carlo methods are often the only available option, especially for large

p ([14]). Direct Monte Carlo uses the average of n independent replicates of I(X E A),

where X is a random vector with density f and I(E) is the indicator function of the

event E. This unbiased estimate of 6 has variance (6 - 92)/n, and squared coefficient

of variation (a - 02)/nO; thus, when 0 is small, inordinately large n are needed to get

a sufficiently accurate estimate. In such cases, importance sampling ([7],[11]) is a useful

variance reduction technique which uses the expression

6 f-2)g(z=dx (2)

for some "sampling density" g. This leads to another unbiased estimator which is the

average of n independent replications of ZMI(Y e A) (where Y has density g) with

variance (fA 9d - 02)/n. The problem then is to find the sampling density which

has a variance that is substantially smaller than that of direct Monte Carlo (that is, for
[i

which f/g is close to constant on A). In practice, generating observations from g and 0

evaluating the ratio f(z)/g(x) should also be easy; otherwise, any savings in variance

.edud,luz could be offset by the added cost of doing these calculations. This reduction ity Codes
.ad/or
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in variance can be used in two ways: we can achieve a desired accuracy with a reduced

sample size, or we can get a more accurate estimate with the same sample size. There

is a large literature on importance sampling and other variance reduction techniques: for

entries into this literature, see for example [11,[2],[3],[6], and [9]; for recent applications to

engineering, see the references in [16].

It is well known ([7]) that the choice g(x) = f(X)I(x E A)/ gives an estimate with

zero variance, but this observation is of limited use since it depends upon the unknown

8. An alternative approach is to restrict attention to a parametric family of functions g,

and to choose an optimal one (or nearly so) from that family. In this paper, we study

this technique for the eN'Iuation of tail probabilities. Our interest is in the accurate

and efficient evaluation of very small probabilities; thus, we seek methods with bounded

coefficient of variation as the probability decreases (usually as the region of integration

goes to infinity), and we assess their performance. Section 2 contains our notation and

some preliminaries. Section 3 contains the univariate case and provides a heuristic for

construction sampling density families. Section 4 contains the multivariate case, and

provides interesting connections of this work with Mills' ratio, for which we provide an

alternative definition. Section 5 contains proofs of selected results of this paper.

2 Notation and Preliminaries

Given an unbiased estimate of 0, our criterion for assessing its performaucc is the

squared coefficient of variation (cV2 ):

S1). (3)

n 82 n 02
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This expression for cu2 allows us to consider only the case n = 1, and study E(92 ) as

a function of the set A. Let Np(O, E) denote a normal distribution with mean 0 and

covariance E = (p'j) with pi1 = 1; when E is nonsingular, Op(z; E) is the corresponding

density. When p = 1, let f(x) and 0 denote the standard normal distribution and density,

respectively. A Np(0, I) variate, where I stands for the identity matrix, will be denoted

Z; its dimension will be clear from the context.

A function which appears in many calculations below is Mills' ratio ([4]):

M()= ( ) (4)

and its multivariate version ([12])

M(X;E ) = P(X > X) (5)OP(X; E) ()

where X is a Np(O, E) variate, and z > y means xi > yi for all i. The properties of these

functions that we need are given in the appendix. In Section 4, we introduce another

definition of a multivariate normal Mills' ratio and study its properties there.

3 The Univariate Case

Even though importance sampling is much more important for high-dimensional prob-

ability integrals, we begin with a treatment of the univariate case for several reasons. First,

it allows for a careful analytical examination of the degree of improvement that impor-

tance sampling affords. Next, it provides guidelines for choosing families of sampling

density for the multivariate case. Finally, our discussion here provides justification of

some of the results in [16].
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We start with normal tail probabilities: let 0 = ' (-a) for large positive a, for which

direct Monte Carlo has cv 2 = 4l(-a)- - 1. Two families of sampling density that have

been suggested in this case ([16]) are {(z-A) : 1 E R} and the IA E R, a > 0}.

For the first family, after a change of variables we have

e = e-p 2 / 00 e-"w=(z)dz, (6)

suggesting the estimator

OJ = e -s/2 e-ZI(Z > a -,), (7)

which has

E( 2) = eP24(-j& - a). (8)

A special case is 1 = a: since M(z) .. 1Iz for large x, we have

, - 1 (9)

It turns out (proofs of (10 to (14) are in the appendix) that the optimal members of each

of the two sampling density families do not provide much more of an improvement as

a -- oo. For the first family, the optimal value, u*, of u satisfies 2jLM(a + A) = 1, an..

since M(x) > j for x > 0, a < A* < a + v1T +a2, so that

-1( 1a.) a ---- oo. (10)

For the second family, the optimal values are u* = (a + v + 2)/2 and a* = 1/vf2, so

that

_____as 1 -- * o (1
var(&..) 1
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Thus, the optimal members of these sampling density families provide a moderate im-

provement over O(x - a), which provides a substantial improvement over direct Monte

Carlo.

Notice, however, that the optimal estimators above (and j.) each have coefficient of

variation increasing at the rate -/F as a increases, so that the relative error increases

without bound as the threshold increases. In [16], the exponential density is shown to

overcome this problem. Writing

0 = (a___ 00 e_ 2/2ae_. , (12)
a 1

yields the estimator
= (a) e-X2/2, (13)

a

where X has the exponential density e- " for z > 0. We have

c -() = M(a/v2) 2
M(a)2a-v 1.-asa - oo, (14)

so that the relative error actually decreases with the tail probability.

More generally, a heuristic method for choosing a sampling density (based on a "sim-

ulacrum") is provided in 1161 for such problems. Here, we propose an alternative heuristic

based on some elementary calculations. If X has density f, l'Hapital's rule says that

with suitable regularity, the asymptotic behavior of P(X > a)/f(a) is the same as that

of -f(a)/f'(a). Using a tractable approximation r(a) for -f(a)/f'(a), we get

o = P(X > a) = r(a)f(a) J ( d- r (a) = +(a)f()dt. (15)

Under the same regularity conditions, the last integral in (15) approaches 1 as a -* 00;

thus, it is bounded away from 0, and estimating it with good relative accuracy can be done
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using importance sampling. In fact, it is a rather remarkable fact that the phenomenon

observed in (14) is quite general: for a wide class of problems, the coefficient of variation

not only remains bounded, but it goes to zero , and hczce the relative accuracy improves

as the threshold a increases. In addition, this method is feasible since the calculation of

r(a) depends on the differentiation of the density rather than its integration; since the

tail behavior F is already captured by r(a)f(a), the evaluation of the remaining integral

by Monte Carlo just provides a correction term.

In practice, we use (15) or either of the foilowing two expressions for 0:

0 = = r(a)f(a)
Jo ar(a)f (a) Jo r(a)f (a) (6

and use as a sampling density one that matches the tail behavior of the integrand. The

calculation for the normal in (12-14) uses the first expression in (16). Instead of giving

a general result, we present some examples to illustrate the calculations (in all examples,

CU2 tends to 0 as a tends to oo).

Example 1: Let fo(z) = ze-/r(3) so that r(a) - 1, and using (15) we have

0 = fe(a)0(0 + 1) e-dz (17)

yielding the estimator

fo(a)(X + 1)0, '  (18)

a

where X has a standard exponential distribution. Notice that the tail of "generalized

Gaussian distribution" ([16]) with density proportional to ezp(--o/f ) can be reduced

to this case by a change of variables. Notice also that when ) = 0, the variance is

identically 0.
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Example 2: For the t distribution with k degrees of freedom, the density fk(z) is

proportional to (1 + ' )-(k+,)/2, so that using the second equation in (16) we have

a fk(a-[ (k + a)X2 '(19)

where X has density k/x ' +l for z > 1. A close examination of this example with k = 1

(Cauchy distribution) shows that this method works even when l'H6pital's rule does not

give the right constant in the asymptotics: in this case the two differ by a factor of 2,

r(a )f( a) ~ 1/21ra, while P(X > a)/f(a) 1/7ra.

The use of (6) with # = a is an instance of what is called "improved importance

sampling" (IIS) [16]; we now show that the method based on l'H6pital's rule described

above is better than IIS. Let T > 0 be a random variable with density f, which is

decreasing; then IIS writes

=j0f ()dx o~ f(x(+a) f (z)dx (20)

to suggest the estimator 6, = f(T + a)/f(T). Now suppose that f(z + a)/f(x) < h(a) for

some function h < 1 for all z > 0. When f is normal, h(a) = e-a 2 /2; when f is logistic,

h(a) = e-6; and when f is a t density with k degrees of freedom, h(a) = 1. Since

E0 0 j Ax + a) f(x + a)dx < j h(a)f(x)dx = h(a)O, (21)
f(X)

we have

E& < h(a) and var() _ h(a), (22)e2 - 8 var(&0)

where e0 is the direct Monte Carlo estimate. Thus, even though IIS is an improvement

over direct Monte Carlo for such problems, (22) shows that unless (as a -+ oc) h goes to

0 faster than 8 does, the IIS estimator's coefficient of variation will tend to infinity.
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4 The Multivariate Case

We now turn to the multivariate case, concentrating on the multivariate normal. For

this discussion, we principally deal with the spherically symmetric case, E = I. There

is no loss of generality because of the following simple transformation: if X E RP has

covariance matrix E, then P(X E A) = P( - X E E-TA), and E-X is spherically

symmetric; also, a simulation which generates multivariate observations usually starts by

generating the spherically symmetric variates.

Now suppose that Z is a Np(O, I) variate and A E R' is a closed convex set (such as an

orthant, a rectangle, or a sphere). Suppose that A does not contain the origin; then there

is a point a E A that is closest (in ordinary Euclidean distance) to the origin: I a _<: I x

for all z E A. As before, let 0 = P(X E A). Analogous to (6) we have tLe estimators

jo = I(Z E A) (23)

and

j = e-I/ 2 e-a'ZI(Z E A - a), (24)

where A - a = {x- a: x E A}.

We first show that j, is better than 0. Since A is convex and does not contain 0, A

is contained in the half space {x : a'x > a'a}. Thus,

E(O ) = ea'aP(Z E A -4- a) = e '/ 2 L e-'%(z; I) dx < e-a'/ 20 = e-a'"/2E( 2). (25)
,A0

Thus, as a 1--+ oo, i. provides a vast improvement over 0o. The convexity of A is

crucial, as seen by the following counterexample. Let A = {x E R 2 :1 z 1> r}, and let

0 = P(Z E A), so that the direct Monte Carlo estimate has second moment 0. If we use

8



the sampling density ,(z - a; I), where a is any point on the circle {x E R' :I x I= r}, a

routine calculation shows that the new estimator has second moment e r/ZP(X2(1) r 2 ),

which is at least e72/2P(X2 > r2 = er 2 /20, since the non-central chi-square is stochastically

larger than the central one (X2(,0 2) denotes a non-central chi-square variate with non-

centrality parameter 4,2).

It can be shown that analogous to (14), cv2(0.) increases at a rate proportional to

I a JP, and so we generalize the approach leading to (15) to get estimators with boi-nded

C2 after some preparation. We introduce here a definition of a multivariate Mill' ratio,

which arises in our work below. Let A and a be as before, and let

M(A;I) = P(Z E A)/ p(a;I). (26)

Notice that we have set E = I in (26); alternatively, we can define

M(A; "") = P(X E A)/Op(a; E). (27)

for X a Np(O, E) variate, where a E A minimizes the Mahalanobis distance from the

origin. That is,

a'E-'a < x'E-xz (28)

for all x E A. For a given A, finding a is a quadratic programming problem, and can

be solved by standard iterative methods [5]. Now consider the case in which A is the

orthant {z E RP : x > b} for some b E R P. For evaluating P(X E A) where X is a

Np(O, E) variate, the sampling density p(z - b; I) has been suggested ([2]). In addition,

the multivariate generalization of Mills' ratio proposed in [12] is P(X E A)/0,(x - b; E),

and approximations to it have been studied in [8],[13]. We now propose new alternatives

to each of these.
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First, instead of using 0,(z - b; E), (25) suggests the use of the sampling density

bp(x - a; E), where a is given by (28). A simple example clarifies the s;tuation. Suppose

that p = 2, A = {x : x, _ a,X 2 >_ 0}. If corr(X,,X 2 ) = p, then a = (a,,alp) while

b = (a,, 0). By (25), the use of a is better than direct Monte Carlo; furthermore, it can

be shown here that the use of a is better than that of b, and that tbe use of b can actually

be worse than direct Monte Carlo for sufficiently large p.

More generally, for any convex A not containing the origin, for E = I we can rotate

"he axes to get a .=I a I el, where el is the unit vector in the z directior, so that A is

contained in the half space {x z - a 1}.

P(Z E A) = 4p(a; I) L_ e-°" 1-='/2 dX (29)

or after some reductions,

P(Z E A)- ,(a;I) JT.A. /2lezp(-ti - y'y/2)dtdy (30)

where y = (t 2,...,tp) and T. is the matrix diag(I a 1, 1).

The expression (30) yields several results. First, it shows thaL the sampling density

should be proportional to exp(-ti - y'y/ 2 ); using methods similar to those leading to

(14), it can be shown that the coefficient of variation decreases to zero if A - a is a cone,

or if To(A - a) = A - a. Next, it provideo an inequality for our Mills' ratic.

Proposition 1 For conver A,

M(A;-I)< °/2 (31)MCA;i- lI < a I'

An asymptotic expand'ion analogous to that of the one-dimensional case can be derived

also by expanding the integrand e- ?/2 al in (30) and integrating term by term.
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5 Appendix

Proof of (10): Let g(#) be E(jI) from (8); to find the optimal value j* of it, we solve

'(/u = 0 or

2pM(,u + a) = 1. (32)

Clearly, u* _ 0; next, if 0 <A < a then

1 1 1
M(j -r- a) - ,(33)

A <s+a 2a

so that A" > a. Next, since for x > 0 we have M(x)> -2,

1=M(a + ) > (34)

we have u* < 2 +i < a + . To show the asymptotic equivalence of 8 . and O,, note

that we only need consider second moments instead of variances. Using (32), to get the

equation below, and writing u for A*, we have

> E(i.) ell(a + y) a 1= _e,(_a . -ep g- a)2), (35)
2A&G2 4(-2a) As 2

which tends to 1 as a -. oo.

Proof of (11): Writing 7- = 1/, we have

fv- 10(11 (+) O(x)dx. (36)

For 0,,, derived from this expression,

E( ,._) - ) 2 T2  (2 - r 2 (37)

E(O ,2- 1 exp(- -_ _____

r2 _ 'r2 %/2 -.2r2

Using the same methods as in the proof of (10), it can be shown that the optimal values

of A and r satisfy (i) a < u* < a + -L, and 1 < 7* < 2. Writing. pand T for p, and 7-*,

a 11



and using the approximation M(z) 1/z, it is easy to show that

E(8 ) 1 Tr2
E(6T) - -exp(T(, - a)2). (38)

Since ji - a < -L and r > 1, the ratio in (38) is bounded between 1/2 and 1 as a --+ oo,

so that the optimal member of this family is asymptotically equivalent (up to a constant)

to 6)o. In fact, more involved calculations show that the optimal values are those given

above in (11).
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